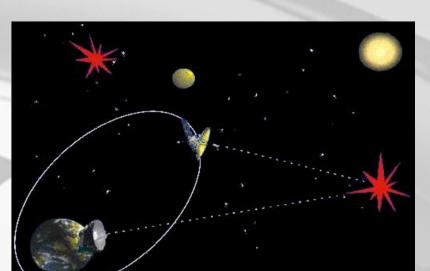


6th International Symposium "METROLOGY OF TIME AND SPACE"

ON-BOARD ACTIVE HYDROGEN MASER FOR RADIOASTRON MISSION (DESIGN AND EXPERIMENTAL RESULTS)


<u>A. Utkin</u>, A. Belyaev, Y. Pavlenko, "Vremya-CH", Nizhny Novgorod, Russia

The Radioastron is an international space VLBI project led by the Astro Space Center of Lebedev Physical Institute in Moscow, Russia.

- Scientific program:
- Galactic nuclei.
- Cosmology effects; redshift
 - dependence of various physical parameters of galactic nuclei; dark matter and dark energy effects.
- Star and planetary systems formation, masers and Megamasers.
- Stellar mass black holes and neutron stars.
- Interstellar and interplanetary media.
- Fundamental astrometry and development of the high precision celestial coordinate frame.
- Development of the high precision model of the Earth's gravitational field.

Introduction

Parameters of the Orbit:

- Period (variable) 8 9 days.
- Apogee between 310,000 and 390,000 km.
- Perigee between 10,000 and 70,000 km.
- Initial inclination 51°.

General information

- Active on-board hydrogen maser technology (the first in the world active H-maser intended for operation in open space).
- Using space vacuum for pumping the microwave cavity.
- Frequency instability 2×10⁻¹³ @ 1 s, 3×10⁻¹⁵ @ 1000 s.
- Increased mechanical durability of the construction
- Additional pressurized volume for electronic packages
- Weight 60 kg, size 460x729 mm (diameter and height)
- Operational lifetime more than 10 years



Mathematical modeling

AN NODAL SOLUTION FEB 25 2005 STEP=1 ANA 18:20:22 SVB =5 FREQ=520 YAVG) USUM RSYS=0 DMX = .111E-03 SMX = .111E-01 0 .1248-04 Data in consistent DesignSpace MKS units 743E-04 .867E-04 .619E-04 111E-0 .295E+08 147E+Q8 .737E+08 .103E+09 133E+0 Data in consistent DesignSpace MKS units

3D ANSYS mechanical construction simulation model 128555 nodes, 62497 elements

Field of maximal accelerations. Blow along axis Y with amplitude 40 g

Physical package with additional pump (on the top). Electronic package with additional pressurized volume filled with dry nitrogen placed on thermostabilized plate. Needed temperature accuracy – not more than ± 1 °C in any point of working temperature range from 25 to 35°C.

General view of the on-board hydrogen maser

Vremya-CH

RUSSIA

- Considerable increase of mechanical durability of the construction.
- Using of space vacuum for pumping the microwave cavity.
- Additional pressurized volume, filled with dry nitrogen.
- Development of a new atomic beam forming system with improved parameters.
 - ✓ Increased capacity of the hydrogen source is 45 l·bar.
 - ✓ Pumping elements produced from titan-vanadium alloy. Capacity 50 l⋅bar.
 - \checkmark Reinforced construction of the ion pump.
 - \checkmark Reinforced construction of the discharge bulb.
 - \checkmark Reinforced construction of the purifier.

Theoretical investigation of cavity parameters

Temperature coefficients for different materials and temperature accuracy for instability 1.10⁻¹⁵

Cavity material	$\alpha_{_T}$	$\Delta f_{cav} / 1^{\circ}C$	Accuracy of maintenance of a cavity temperature for instability 1-10 ⁻¹⁵
Polycrystalline glass	$\pm 3 \cdot 10^{-7} K^{-1}$	426 Hz	$1.23 \cdot 10^{-4} \circ C$
Aluminum	$22 \cdot 10^{-6} K^{-1}$	31250 Hz	$1.68 \cdot 10^{-6} \circ C$
Quartz	$+5 \cdot 10^{-7} K^{-1}$	710 Hz	$7.4 \cdot 10^{-5} \circ C$
Carbon fiber	$+5 \cdot 10^{-7} K^{-1}$	710 Hz	$7.4 \cdot 10^{-5} \circ C$

Polycrystalline glass cylinder with a multilayered carbon fiber covering was designed and realized.

Polycrystalline glass cylinder with a multilayered carbon fiber

Cavity temperature coefficient

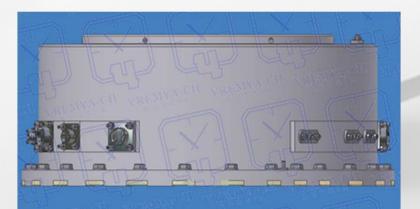
covering

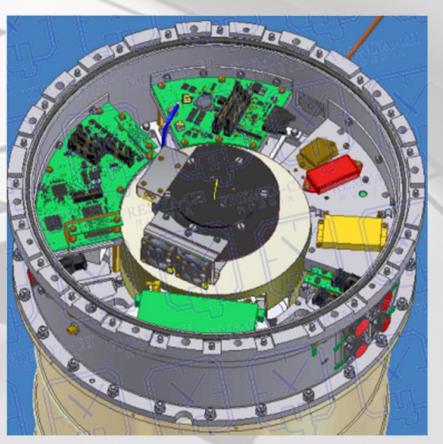
of frequency : $Temp.coeff(cavity) = -48 \frac{Hz}{1^{\circ}C}$

Correspond to: $\alpha_T(cavity) = -3.38 \cdot 10^{-8} K^{-1}$

Mechanical and shock testing

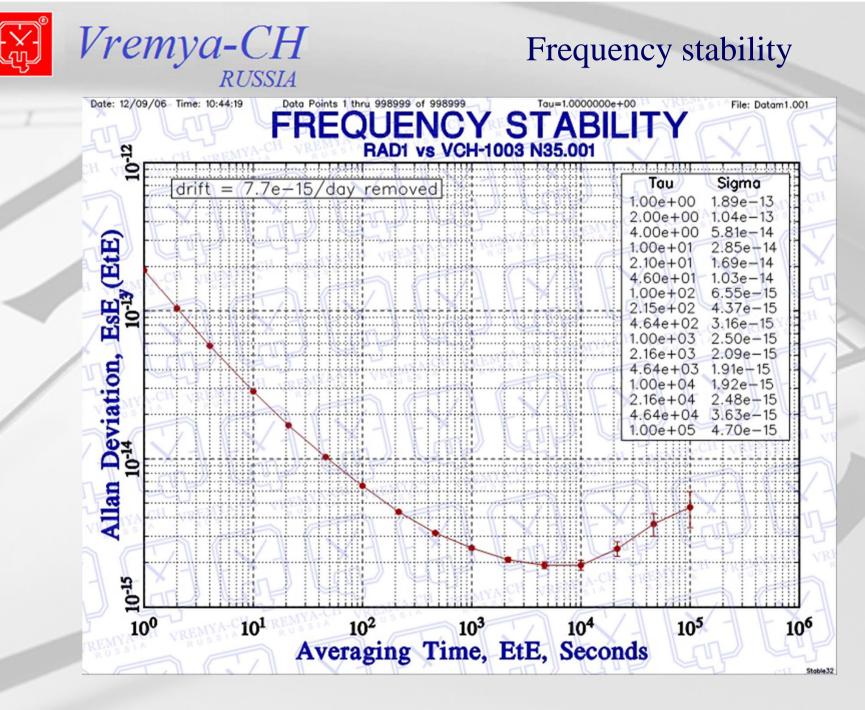
Broadband random vibration in a range 20 – 2000 Hz with vibroacceleration up to 10 g Shocks with amplitude up to 40 g


Variation of cavity frequency not more than 3 kHz with total varactor tuning range 24 kHz.



Additional pressurized volume for electronic part and discharge bulb

- Provide stable discharge starting.
- Sufficient heat-removing from discharge bulb and High Frequency Oscillator.
- Sufficient heat-removing from all electronic elements.



Testing in a space environment modeling chamber

Vremy	a-CH
•	RUSSIA

Conclusion

Parameter	Requirements	Measurement
Output signal frequency	5 MHz	5 MHz
	15 MHz	15 MHz
Frequency instability (Allan variance)		
1 s	3×10 ⁻¹³	1.89×10 ⁻¹³
10 s	3×10 ⁻¹⁴	2.85×10 ⁻¹⁴
100 s	7×10 ⁻¹⁵	6.55×10 ⁻¹⁵
1000s	3×10 ⁻¹⁵	2.5×10 ⁻¹⁵
1 day (Frequency drift removed)	5×10 ⁻¹⁵	4.5×10 ⁻¹⁵
Thermal sensitivity (1/°C)	5×10 ⁻¹⁵	4.7×10 ⁻¹⁵
Magnetic sensitivity (1/Gauss)	2×10 ⁻¹⁴	1.9×10 ⁻¹⁴
Sensitivity to the power voltage (1/V)	2×10 ⁻¹⁴	5×10 ⁻¹⁵
Power consumption in working condition	60 W	52 W
Mass	60 kg	57 kg
Lifetime	10 years	Expecting more
		then 10 years

18 July 2011 6:31 – Start of Radioastron mission

The first in the world active H-maser launched to open space

Information about Radioastron project: http://www.asc.rssi.ru/radioastron/

Current situation

Thank you for your attention!