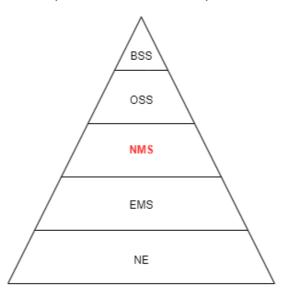


Научно-практический семинар Единое точное время в пакетных сетях: требования, задачи и их решения от АО "Время-Ч"

Система управления сетями тактовой сетевой синхронизации VCH-902


АО «Время-Ч». Докладчик – Кузнецов Константин Андреевич.

Типы систем управления:

- 1. EMS (element management system) отвечает за управление конкретными элементами в сети, зачастую одного типа
- 2. NMS (network management system) отвечает за взаимодействие сетевых элементов
- 3. OSS (operational support system) отвечает за предоставление сервиса потребителям на основе данных из NMS
- 4. BSS (business support system) Планирование, постановка задач, принятие решений

Самый низкий уровень – Network Element (сетевой элемент)

NMS (network management system) — система управления сетью, предназначена для управления различными сетевыми элементами и связями между ними. По иерархии идет до OSS и после EMS.

Как и EMS, может включать в себя функции, соответствующие требования **FCAPS ITU-T**:

Fault Management – управление авариями (событиями), происходящими в системе

Configuration management – управление конфигурацией устройств в системе

Account management – аллокация ресурсов в сети (при возможности); также это понятие может означать администрирование в системе в целом

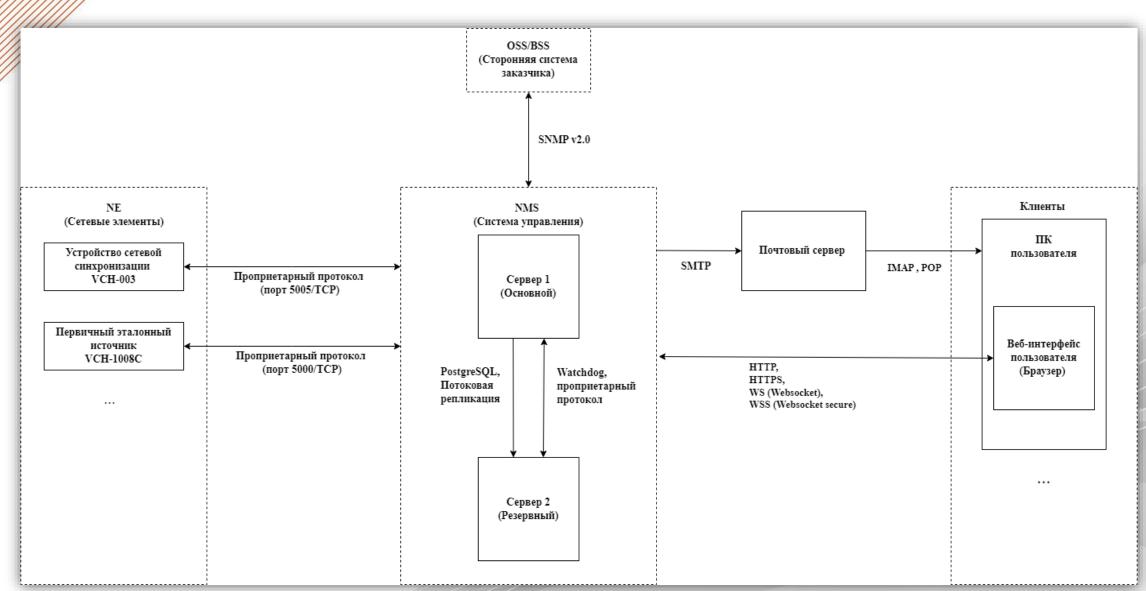
Performance management – управление показателями качества в сети

Security management – управление доступом к системе

Система управления VCH-902:

Тип системы управления - NMS

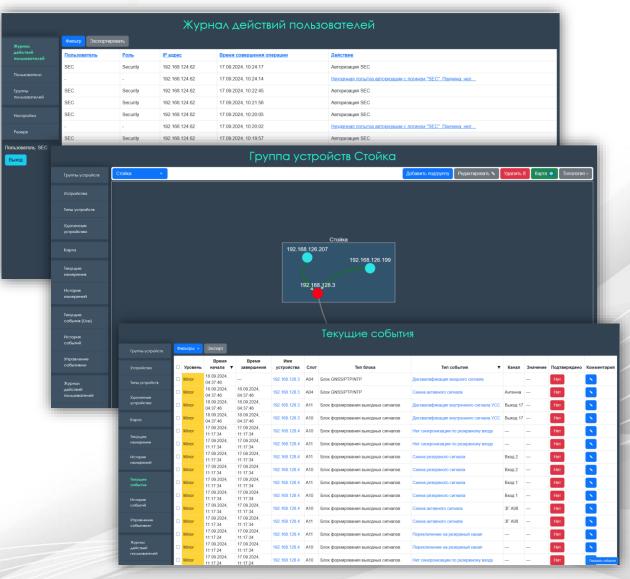
Осуществляет мониторинг и управление сетью тактовой сетевой синхронизации В текущей версии поддерживаются устройства типа УСС VCH-003 и ПЭИ VCH-1008С (устройства сторонних вендоров обсуждаются отдельно).



Использует веб-сервер для взаимодействия с оборудованием и пользователями системы Используемые протоколы взаимодействия

- 1. Пользователь и NMS http/https, ws/wss; (веб-интерфейс)
- 2. Сетевое оборудование и NMS проприетарный протокол (TCP/IP)

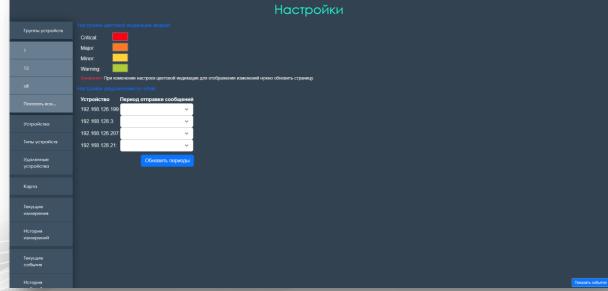
NMS VCH-902. Структура системы и ПО



Особенности VCH-902

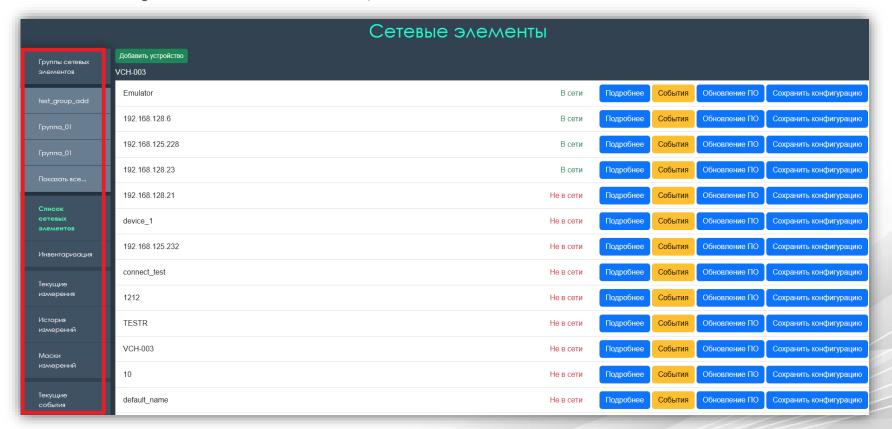
ВРЕМЯ-Ч


- Веб-интерфейс для работы в системе в браузере на ПК пользователя
- Управляемые устройства, система VCH-902 и ПК пользователей в одном выделенном сегменте сети
- 2 сервера в составе основной и резервный
- OC Linux (Debian 12)
- БД PostgreSQL на обоих серверах
- Ролевая модель пользователей
- Журнал действий пользователей
- Учет аварий (событий) в системе
- Просмотр и установка параметров блоков в устройствах сети TCC графический интерфейс с отображением блоков SSU VCH-003 и табличный интерфейс отображения параметров VCH-1008C



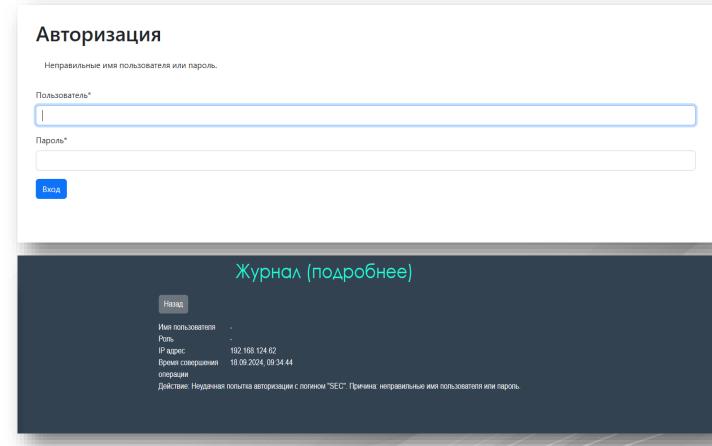
Особенности VCH-902

- Мониторинг показателей качества (МОВИ, ДВИ, df/f)
- Распределение сетевых устройств по группам
- Отображение топологии сетевых элементов
- Настройка оповещения по email о произошедших событиях на сетевых элементах и в самой NMS
- Возможна интеграция системы аутентификации в системе управления с системой контроля доменов (например, Microsoft Active Directory)
- Отправка SNMP-трапов в вышестоящую систему управления
- Удаленная прошивка блока мониторинга и загрузка конфигурации VCH-003
- Картографическое отображение устройств и групп, а также связей между ними
- Потоковая репликация БД с переключением с основного сервера на резервный при возникновении внештатных ситуаций


Особенности VCH-902

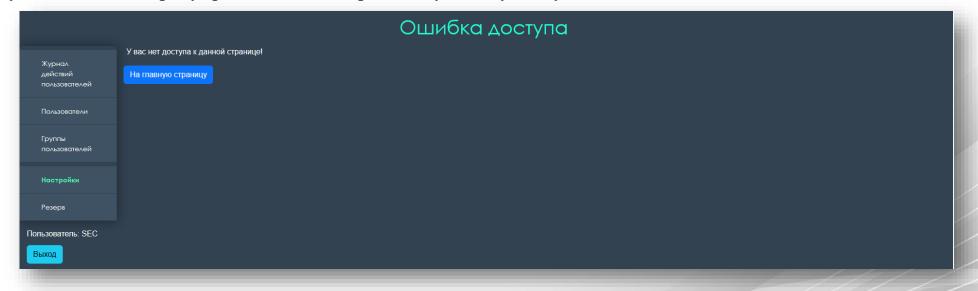
- Первоначальная активация лицензии происходит через специальный софт, предоставляемый АО «Время-Ч»
- Количество сетевых элементов, добавляемых в СУ, ограничивается лицензией, предоставляемой покупателю системы управления
- При необходимости увеличения количества СЭ для VCH-902 отдельно приобретается расширение лицензии, реализованное в виде специального обновления с привязкой к уникальному ключу лицензии, которое необходимо запустить на сервере СУ

Для навигации по системе управления используется главное меню (на рисунке ниже выделена красным цветом его часть)

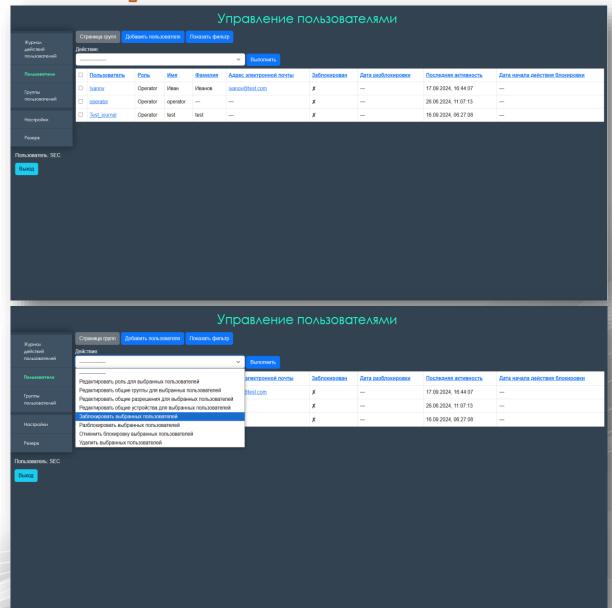


- Для доступа к системе управления необходима учетная запись
- Каждая учетная запись имеет свою роль (или профиль), которая предоставляет доступ к определенным функциям системы управления (ролевая модель пользователей)
- Всего в системе есть 3 роли Operator («Оператор»), Administrator («Администратор») и Security («Безопасность»)
- Нормальная работа в системе подразумевает, что существуют как минимум 2 пользователя, у одного из которых есть роль «Безопасность», а у другого есть роль «Оператор»/«Администратор»
- Создание учетной записи может проводить только пользователь с ролью «Безопасность»
- Роль «Оператор» оператор системы управления, который имеет доступ к некоторым устройствам системы только на чтение, т.е. не может изменять параметры назначенных ему сетевых элементов
- Роль «Администратор» = роль «Оператор» + права на изменение параметров устройства
- Роль «Безопасность» управление пользователями системы управления, просмотр журнала действий пользователей

Авторизация в системе управления



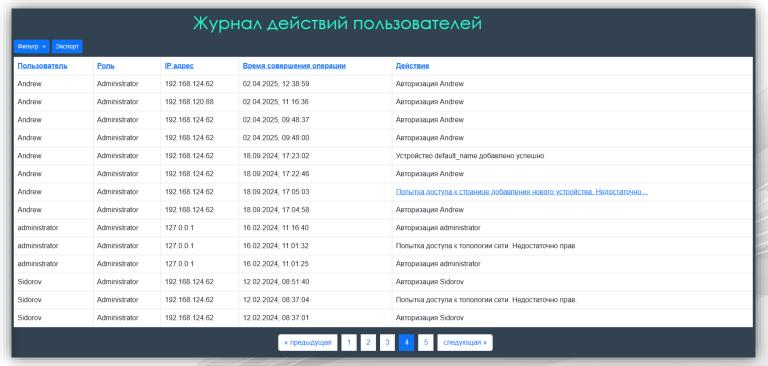
- Доступ к системе через любой веббраузер (кроме Internet Explorer)
- При попытке доступа к системе управления пользователю будет предложено авторизоваться в системе через свою учетную запись
- При вводе неправильного (или несуществующего) имени пользователя или пароля появляется соответствующее предупреждение на веб-странице, а также фиксируется запись об этом в журнале действий пользователей
- При успешном прохождении аутентификации пользователь сможет продолжить работу в системе управления в соответствии с назначенной ему ролью


- При успешной авторизации пользователь может воспользоваться веб-интерфейсом для дальнейшей работы
- В левой части веб-страницы присутствует главное меню, в котором перечислены основные пункты работы в системе управления
- В зависимости от прав пользователя некоторые пункты меню могут быть либо скрыты, либо при нажатии будет возникать предупреждение, что прав доступа текущей учетной записи недостаточно

Раздел «пользователи». Общее

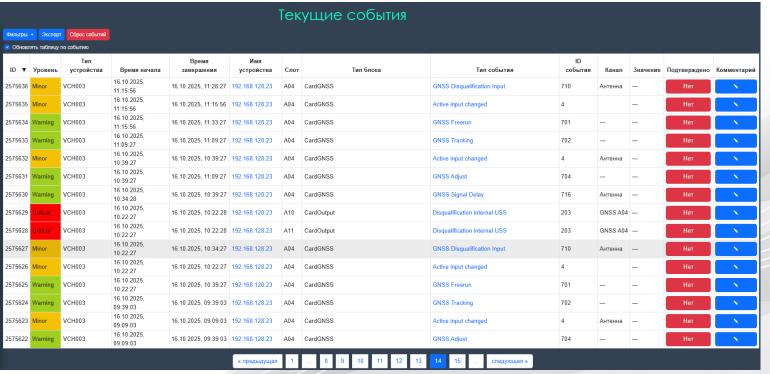
- Данный раздел управление пользователями системы управления
- Доступ к этой веб-странице имеет пользователь только с ролью «Безопасность».
- На этой веб-странице представлена таблица со всеми существующими пользователями системы управления
- Присутствует возможность блокировки пользователя
- Есть временная метка последней активности пользователя
- В столбце «Пользователь» каждый логин ссылка на страницу с правами пользователя
- Первый столбец таблицы для выбора сразу нескольких пользователей
- В выпадающем меню «Действие» можно произвести общие действия для выделенных в первом столбце пользователей блокировка/разблокировка, удаление и т.д.

Управление пользователями. Добавление пользователя

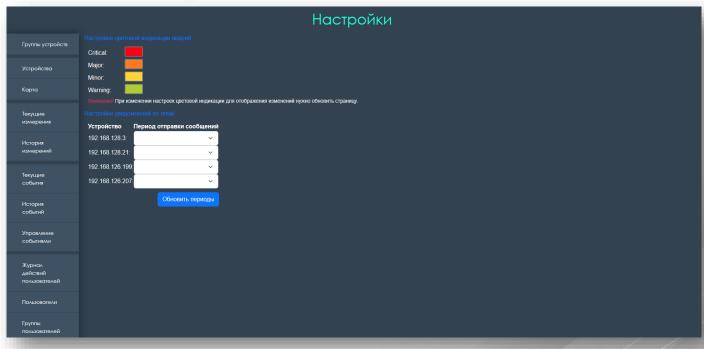

- При нажатии на кнопку «добавить пользователя» произойдет переход на страницу с формой добавления нового пользователя системы
- Здесь вводятся основные данные для регистрации конкретного пользователя (роль, логин, пароль и т.д.), а также список устройств для доступа оператора в системе
- Создание нового пользователя регистрируется в журнале действий пользователей в системе
- Система управления предоставляет возможность назначать общие права для некоторой группы операторов группы доступа
- Есть возможность сразу задать группу доступа для создаваемого пользователя

	Добавление нового польз	зователя
Группы устройств	Пользователь*	
Устройства	Обязательное none. Не более 150 симвопов. Только буквы, цифры и симвопы @/ /н/л	
Типы устройств	Имя	
Карта	Фамилия	
Текущие		
измерения	Адрес электронной почты	
История измерений	Пароль*	
Текущие события		
История	Подтвердите пароль*	
событий	Pons*	
Управление событиями	Operator	·
Журнал действий пользователей	Список групп доступа Group_001 Group_002 Group_003 > Group_003	
Пользователи	Group_004 Group_005 Group_006	
Группы		

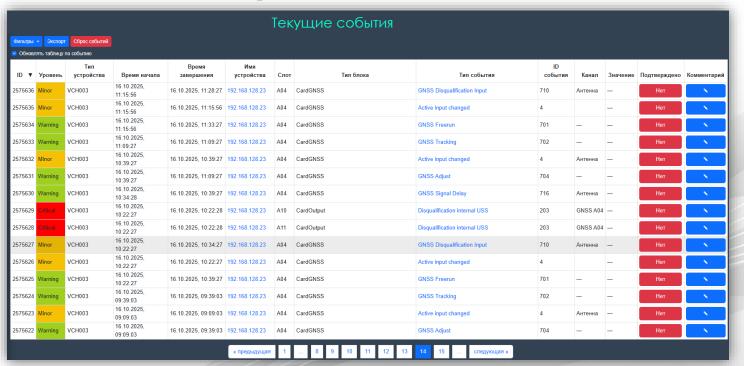
Регистрация действий пользователей VCH-902


- Для регистрации действий пользователей ведется «Журнал действий пользователей»
- Журнал разбит на страницы с фиксированным количеством строк
- Просмотр журнала разрешен только пользователю с правами «Безопасность»
- В журнале есть информация о логине, роли, IP адресе пользователя, а также описание действия пользователя и время совершения операции
- Возможен экспорт журнала в формате .csv, файл сохраняется в папку «загрузки» веб-браузера
- Если длина текста в описании действия достаточно большая, то оно отображается в виде ссылки на страницу с полным описанием действия
- Присутствует фильтрация по всем столбцам таблицы, а также сортировка

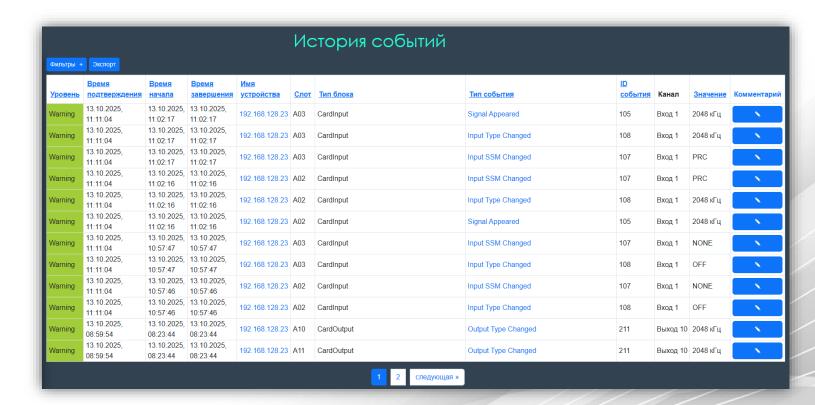
Управление событиями


- В системе управления ведётся мониторинг событий (или аварий), происходящих на устройствах и в системе управления в целом
- События по уровням критичности разделяются на «Warning», «Minor», «Major», «Critical»
- Для каждого сетевого элемента в системе имеется определенный набор типов событий в виде таблицы (раздел «Управление событиями» в главном меню)
- Для каждого события указан уровень критичности. Уровень критичности для отдельного типа события можно изменить
- События, происходящие на устройствах и в системе, отображены в таблицах «Текущие события» и «История событий»

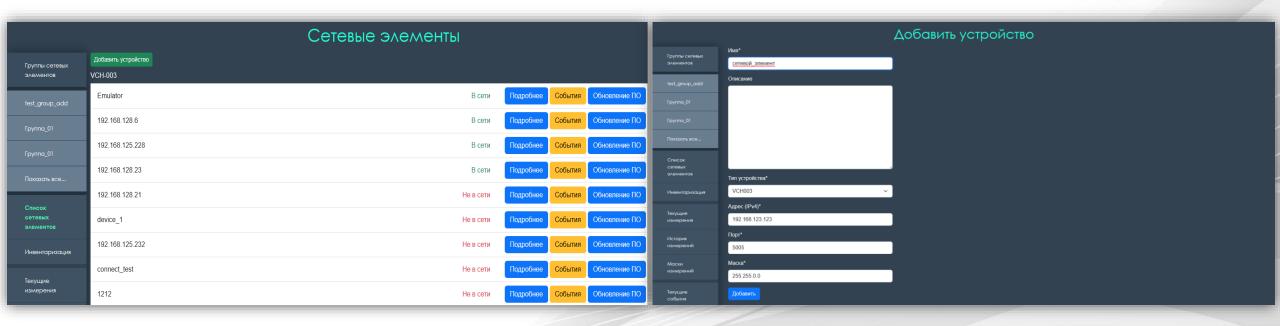
Управление событиями. Настройки


- Цветовая градация событий для каждого уровня может быть изменена пользователем в разделе «Настройки» в главном меню. При этом она изменится для всех пользователей системы
- Есть функционал отправки сообщений с аварийной информацией с конкретным интервалом на email пользователю
- В сообщении содержится минимальная информации о числе произошедших событий
- Для каждого устройства интервал отправки сообщений по email настраивается отдельно

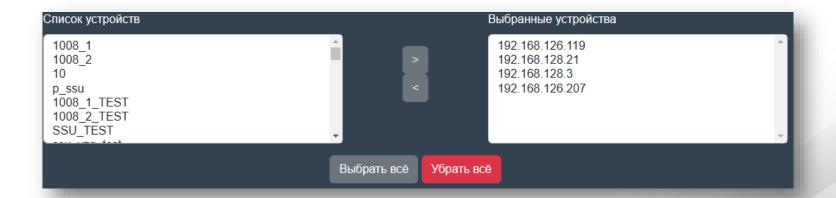
Управление событиями. Текущие события



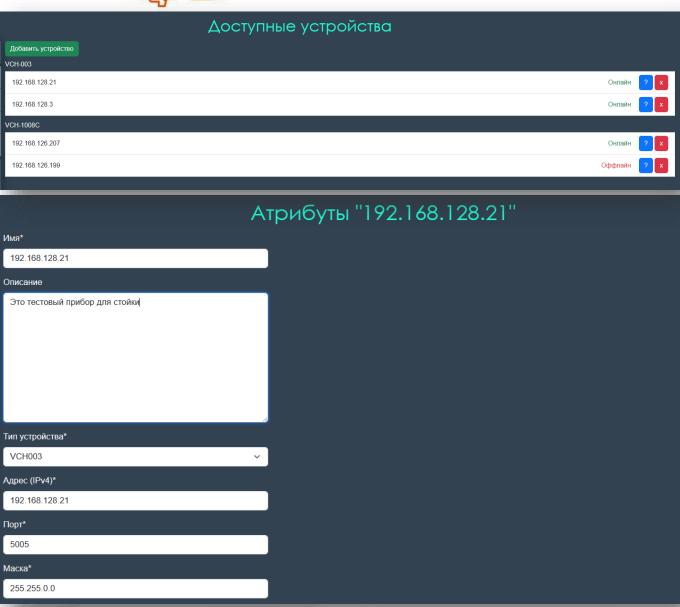
- Активные события представлены в виде таблицы.
- Для соответствующих устройств указан слот сетевого элемента, к которому относится событие
- Некоторые события могут относиться ко входам или выходам определенного блока устройства. В этом случае заполняется столбец «Канал»
- Некоторые события могут означать изменение параметра устройства. В этом случае заполняется столбец «Значение»
- Есть функционал подтверждения (сброса) событий, при этом события попадают в таблицу «Истории событий»
- Для каждого события можно оставить комментарий
- Таблица обновляется автоматически при появлении нового события


- В таблицу «Истории событий» попадают события, которые были завершены и подтверждены пользователем в разделе «Текущие события»
- Структура и функционал таблицы схожи со структурой «Текущих событий», но есть дополнительный столбец «Время подтверждения»
- Комментарии, оставленные в разделе «Текущих событий», транслируются в историю событий
- Данная таблица не обновляется динамически

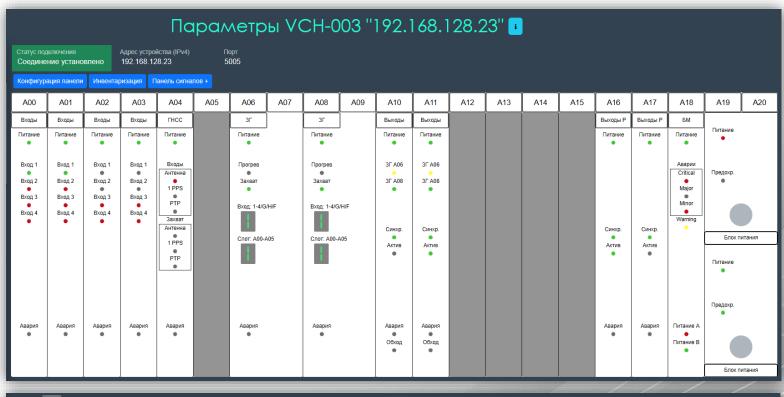
Устройства в системе. Добавление сетевого элемента


- Для появления сетевого элемента в системе пользователю необходимо добавить устройство в разделе «Список сетевых элементов»
- Можно задать сетевые настройки устройства (IP-адрес и порт), а также его название и тип в системе управления
- Для добавленных сетевых элементов типа VCH-003 можно произвести обновление ПО блока мониторинга, а также сохранение конфигурации блоков и их параметров с возможностью последующего восстановления

Сетевые элементы. Настройки доступа


- Для корректной работы с устройствами в системе управления необходимо разрешить работать с ними в профиле конкретного пользователя в таблице «Пользователей»
- Добавление устройств осуществляет пользователь с ролью «**Безопасность**» в поле «Список устройств».
- Если не предоставить пользователю разрешение на работу с отдельным сетевым элементом, то он не сможет увидеть его интерфейс и изменить его параметры из системы управления

Сетевые элементы в системе управления

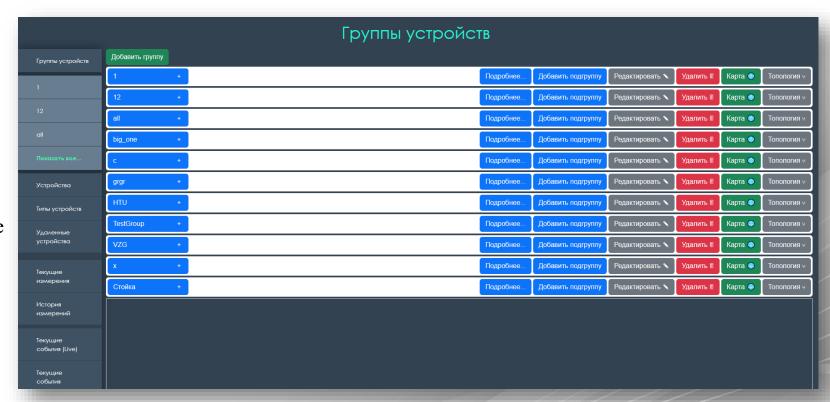

- После добавления сетевых элементов в систему управления пользователь сможет увидеть разрешенные устройства на отдельной странице
- Для каждого устройства имеется информация о статусе устройства в системе: «Онлайн» означает, что устройство подключено к системе, «Оффлайн» означает потерю связи с устройством
- Кнопка с иконкой «?» перенаправит пользователя на страницу «Атрибуты» устройства, которые были выбраны при его добавлении в систему управления.
- Чтобы выбрать сетевой элемент, необходимо нажать на соответствующий пункт списка произойдет переход на отдельную страницу сетевого элемента

Устройства в системе. SSU VCH-003

- Если выбран тип сетевого элемента SSU VCH-003, то откроется графический интерфейс его передней панели
- Есть индикация наличия соединения прибора с системой управления
- В случае наличия соединения индикатор горит зеленым цветом, и статус подключения меняется на «Соединение установлено». При потере соединения передняя панель устройства скрывается, и остается лишь статусное сообщение
- Настройка каждого из блоков передней панели (кроме A19 и A20) может происходить прямо из веб-интерфейса
- Доступна выгрузка инвентаризации блоков сетевого элемента

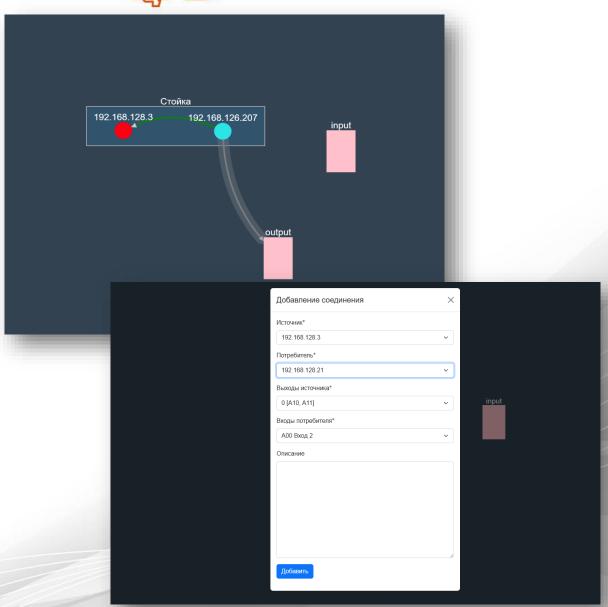
Экспорт	CSV								
Слот	Тип блока	Серийный номер Версия программного обеспечения		Версия аппаратного обеспечения					
A00	Блок входных сигналов	14 2024	1.0 18.04.2024	0.0 05.03.2024					
A01	Блок входных сигналов	15 2024	1.0 18.04.2024	0.0 05.03.2024					
A06	Блок генератора	25 2024	1.0 17.05.2024	1.0 03.11.2022					
A08	Блок генератора	32 2024	1.0 17.05.2024	1.0 03.11.2022					
A10	Блок формирования выходных сигналов	2 2024	1.0 24.07.2024	0.0 10.06.2024					
A11	Блок формирования выходных сигналов	40 2024	1.0 24.07.2024	0.0 10.06.2024					
A18	Блок мониторинга	14 2023	1.0 18.04.2024						

Устройства в системе. SSU VCH-1008C


- Сетевые элементы типа VCH-1008C имеют табличный интерфейс с параметрами каждого блока
- Считывание параметров блоков происходит каждые 5 секунд
- На странице имеется статус подключения к сетевому элементу, индикатор его состояния и информация о сетевом подключении
- Справа от блока «Система АПЧ» предоставляется меню для взаимодействия с VCH-1008C

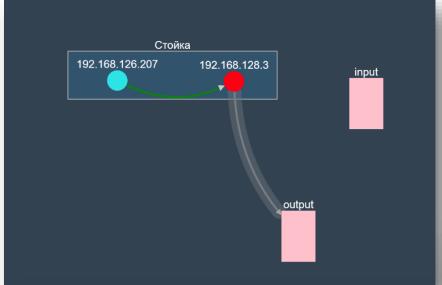
	_					
Статус подключения Соединение установлено	Статус устройства Режим корр. шкалы вр. г	Дата и время измерения 13.10.25 17:04:58	Адрес устройства (IPv4) 192.168.126.222) Порт 5000		
Мазер		Блок термостатов		Система АПЧ		Режим работы
Uртр, кB	3.59	Temp1	-3	D2H	-11601	
Іртр, мкА	0.427	Temp2	-36	RDac	43179	Дискриминатор
Upur, B	0.420	Temp3	-28	QCDac	48700	
lpur, A	0.650	Pwr1	702	QDac	40658	Поиск линии
Uhfo, B	0.617	Pwr2	2975	F	14047	Управление частото
Ihfo, A	2.72	Pwr3	3649	T, °C	51	управление частого
Udis, B	27.3			U20M	670	Шкала времени
Hpress, Атм	8.87			IF	998	
				RcvGet	447	Конфигурация сети
				RDet	0	7,
ФОС]	Питание		PhiQtz	0	Дата и время
U5M1, B	1.05	Uacc, B	-0.078	PhiRez	0	
U5M2, B	1.06	Uext, B	-0.168	PhiCor	0	История параметро
U10M1, B	0.953	U+27, B	27.7	Pumping	3500	
U10M2, B	0.954	U+15, B	14.8	ModIndx	0	Полная история
U100M, B	1.05	U-15, B	-15.0	KiQ	0	
U2048, B	0.824	U+5, B	4.87	KpQ	0	
2048	OK	U+3.3, B	3.41	KiR	0	
1M	OK	Uacdc, B	-48.0	KpR	0	
••••	OK		-40.0	KTemp	0	
				DdsCorPrd	0	

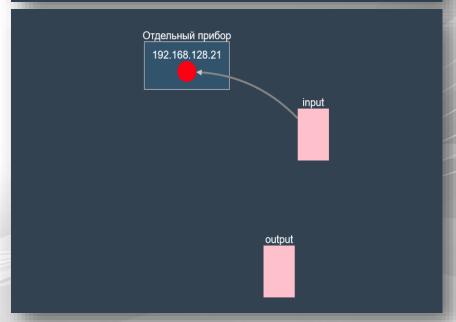
Устройства в системе. Группы устройств


- Устройства в системе можно логически группировать
- Группы устройств могут пересекаться
- В группах устройств можно создавать подгруппы древовидная структура
- Группы можно редактировать, удалять, рассматривать на отдельной странице вне общего списка
- Также можно развернуть группу, чтобы проделать аналогичные действия с подгруппами устройств

Устройства в системе. Группы устройств. Топология сети

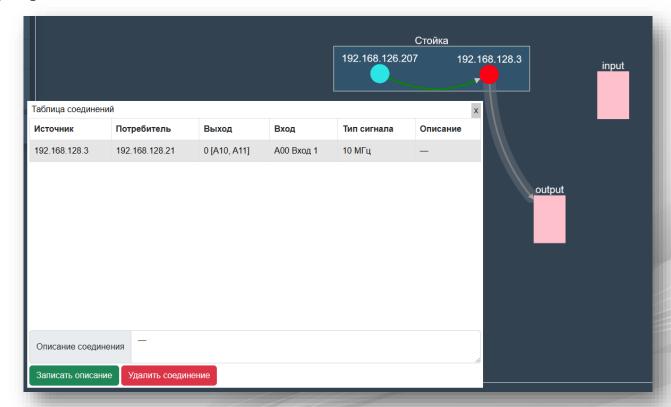
ВРЕМЯ-Ч

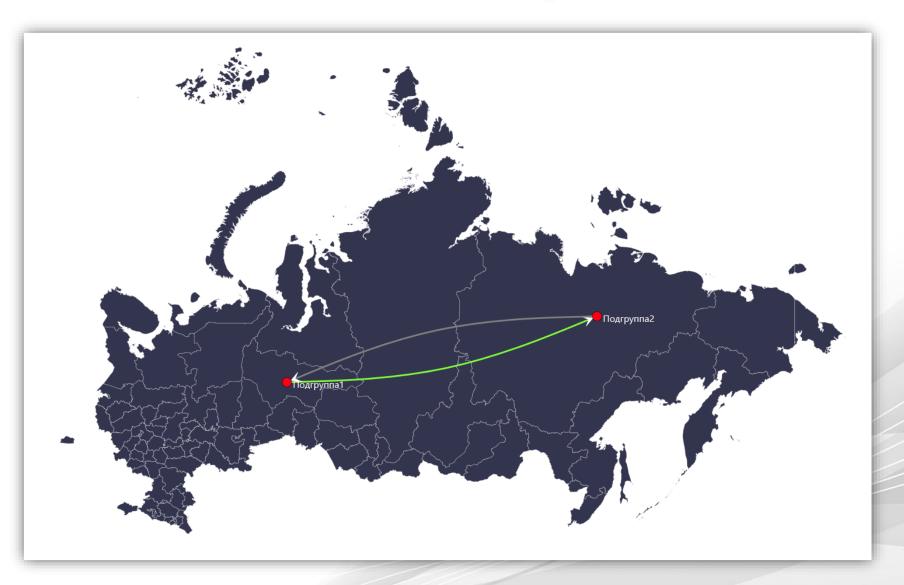

- Можно просматривать топологию сети в пределах группы устройств.
 На топологии также отмечаются и подгруппы. Визуально они отображаются в виде прозрачных блоков
- Каждое устройство внутри группы отображается как отдельный узел (нода)
- На топологии можно добавить соединения между нодами. Такие соединения добавляются пользователем вручную



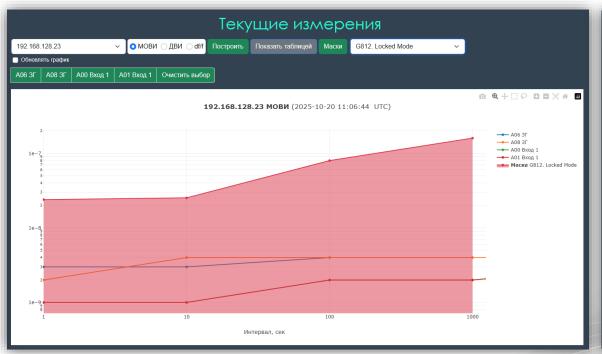
Устройства в системе. Группы устройств. Топология сети

- После успешного добавления соединения между нодами будет отрисовано направленное ребро
- Соединений может быть несколько, но на рисунке они «схлопываются» в одно ребро
- В качестве потребителя можно выбрать устройство из отдельной группы. В этом случае соединение будет между нодой устройства и блоком «output», т.е. будет означать соединение с устройством за пределами текущей отрисованной группы. Если у пользователя сеть доступ к устройству за пределами текущей группы, он может открыть топологию с этим устройством, и увидеть, что новое соединение исходит из блока «input»
- На рисунках справа указано соединение между устройствами, находящимися в различных группах группа «стойка» и группа «отдельный прибор»
- Если прибор не находится в группе, то его не будет видно на топологии



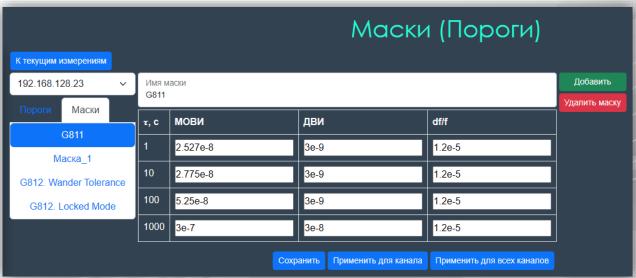

Устройства в системе. Группы устройств. Топология сети

- При нажатии на ребро появляется таблица с информацией о соединениях между устройствами
- Соединение в таблице можно удалить, а также добавить ему описание
- Нода на топологии закрашивается в цвет аварии максимальной критичности на сетевом элементе
- Соединение между устройствами закрашивается в зеленый цвет, если нет аварий на входах блока входных сигналов SSU VCH-003.
- Если хотя бы на одном входе авария есть, то соединение закрашивается в цвет светодиода, соответствующего этому входу (красный или жёлтый)



Устройства в системе. VCH-003. МОВИ, ДВИ, df/f

- В системе присутствует мониторинг текущих измерений показателей качества (МОВИ, ДВИ, df/f)
- Визуализация на графике или в табличном виде
- Есть возможность использования стандартных масок G811 и G812, а также произвольных заданных пользователем масок
- Ведётся журнал «Истории измерений»
- С веб-страницы «Текущих измерений» можно перейти в настройки масок и порогов


	История измерений										
Фильтры + Экспорт											
<u>Устройство</u>	Метка времени	Тип измерений	Имя входа	<u>1 c</u>	<u>10 c</u>	<u>100 c</u>	<u>1000 c</u>	Активный блок выходных сигналов	Активный блок генератора		и
192.168.128.6	20.10.2025, 11:12:42	дви	A05 GNSS	3.36964e-11	4.74151e-10	1.07070e-9	6.61333e-9	A10	A06	График	ı
192.168.128.6	20.10.2025, 11:12:42	МОВИ	A05 GNSS	1.00000e-9	2.00000e-9	9.00000e-9	1.90000e-8	A10	A06	График	ı
192.168.128.6	20.10.2025, 11:12:42	df/f	A05 GNSS	0	0	7.00000e-11	8.00000e-12	A10	A06	График	1
192.168.128.6	20.10.2025, 11:12:42	дви	A08 3Г	2.05182e-11	8.17980e-11	1.52357e-10	2.24673e-10	A10	A06	График	
192.168.128.6	20.10.2025, 11:12:42	МОВИ	A08 3F	1.00000e-9	1.00000e-9	3.00000e-9	3.00000e-9	A10	A06	График	
192.168.128.6	20.10.2025, 11:12:42	df/f	A08 3F	0	0	0	-1.00000e-12	A10	A06	График	i
192.168.128.6	20.10.2025, 11:12:42	дви	A04 GNSS	3.02870e-11	0	5.88938e-10	1.01021e-9	A10	A06	График	
192.168.128.6	20.10.2025, 11:12:42	МОВИ	A04 GNSS	2.00000e-9	2.00000e-9	1.00000e-9	6.00000e-9	A10	A06	График	ı
192.168.128.6	20.10.2025, 11:12:42	df/f	A04 GNSS	0	0	0	5.00000e-12	A10	A06	График	ı
192.168.128.6	20.10.2025, 11:12:42	дви	A06 3F	6.54928e-11	1.79625e-10	3.31133e-12	3.05006e-11	A10	A06	График	ı
192.168.128.6	20.10.2025, 11:12:42	МОВИ	A06 3F	2.00000e-9	2.00000e-9	3.00000e-9	3.00000e-9	A10	A06	График	
192.168.128.6	20.10.2025, 11:12:42	df/f	A06 3F	0	0	0	0	A10	A06	График	
192.168.128.23	20.10.2025, 11:05:44	дви	А01 Вход 1	0	0	1.06698e-10	1.69505e-10	A11	A08	График	

Устройства в системе. VCH-003. МОВИ, ДВИ, df/f

- Есть выпадающий список для выбора сетевого элемента
- Пороги считываются с сетевого элемента и могут быть модифицированы со стороны системы управления с последующей записью на устройство
- Присутствуют стандартные маски, а также есть возможность задать пользовательские
- Пороги могут использоваться для дисквалификации сигнала по МОВИ, ДВИ, df/f
- Маски в стандартном сценарии используются для визуального сравнения текущих измерений относительно маски, но также могут быть применены в качестве порога для конкретного входа

VCH-902. Экспорт файлов

- В системе управления присутствует программный модуль, ответственный за экспорт таблиц на сервер
- Экспорт таблиц происходит в фоновом режиме
- Статус экспорта можно проверить на отдельной странице «Управление файлами»
- Есть возможность скачать с сервера сформированные файлы в формате «.csv»

Экспортированные файлы							
Группы сетевых	<u>ID</u>	<u>Дата экспорта (UTC)</u>	<u>Файл</u>	Завершено	Тип таблицы	Размер файла, КБ	
элементов	165	13.10.2025, 11:31:54	export_165_UserAction.csv	√	Журнал действий пользователей	11519	Скачать
test_group_add	164	13.10.2025, 11:30:26	export_164_UserAction.csv	√	Журнал действий пользователей	11519	Скачать
Группа_01	162	17.09.2025, 08:09:35	export_162_CurrentEvent.csv	√	Текущие события	91971	Скачать
Группа_01	161	17.09.2025, 07:20:30	export_161_CurrentEvent.csv	√	Текущие события	91971	Скачать
Показать все	160	17.09.2025, 05:00:23	export_160_CurrentEvent.csv	√	Текущие события	91971	Скачать
Список сетевых	159	05.09.2025, 07:42:15	export_159_UserAction.csv	√	Журнал действий пользователей	Файл был удален с сервера	Скачать
элементов	158	05.09.2025, 07:41:06	export_158_UserAction.csv	√	Журнал действий пользователей	Файл был удален с сервера	Скачать
Инвентаризация	157	05.09.2025, 07:40:44	export_157_UserAction.csv	√	Журнал действий пользователей	Файл был удален с сервера	Скачать
Текущие измерения	156	05.09.2025, 07:35:50	export_156_MeasurementHistory.csv	√	-	Файл был удален с сервера	Скачать
История	152	05.09.2025, 07:26:13	export_152_UserAction.csv	√	Журнал действий пользователей	Файл был удален с сервера	Скачать
измерений	151	05.09.2025, 07:26:02	export_151_CurrentEvent.csv	√	Текущие события	Файл был удален с сервера	Скачать

- В системе управления присутствует программный модуль, ответственный за взаимодействие по SNMP с вышестоящими системами управления
- Система управления VCH-902 имеет единственный MIB-файл
- При возникновении событий в системе управления формируются SNMP-трапы
- Адрес хоста, куда отправляются трапы, предустанавливается в конфигурации системы при инсталляции NMS
- Модуль для взаимодействия по SNMP на текущий момент не имеет веб-интерфейса и поддерживает только SNMPv2

VCH-902. Резервирование и контроль работоспособности

- Для системы управления VCH-902 предусмотрено резервирование, когда есть два сервера основной, с которым пользователь ведет работу (на этом сервере есть база данных с разрешением на чтение и запись Master, Main), и резервный, находящийся в «спящем режиме» (Slave, Replica)
- Для актуализации таблиц на резервном сервере используется процесс потоковой репликации, когда данные с основного сервера в реальном времени реплицируются на резервный
- При возникновении внештатной ситуации оператору будет предоставлена возможность самостоятельно принять решение о переключении ролей между серверами на основе показателей работоспособности процессов базы данных, состояния соединения между основной и резервной системами, состояния соединения между устройствами и обоими серверами и т.д.
- Для контроля работоспособности на сервере постоянно запущена программа Watchdog, проверяющая доступность модулей системы управления как на текущем, так и на резервном сервере

RedisM: ok PostgresM: ok PostgresClusterM: ok DjangoM: ok DaemonSSU: ok Daemon1008: ok WatchdogM: ok	Состояние сервисов на текущем сервере					
PostgresClusterM: ok DjangoM: ok DaemonSSU: ok Daemon1008: ok	RedisM:	ok				
DjangoM: ok DaemonSSU: ok Daemon1008: ok	PostgresM:	ok				
DaemonSSU: ok Daemon1008: ok	PostgresClusterM:	ok				
Daemon1008: ok	DjangoM:	ok				
	DaemonSSU:	ok				
WatchdogM: ok	Daemon1008:	ok				
	WatchdogM:	ok				

Состояние серви	сов на противоположном сервере
ReservServer:	ok
DjangoR:	ok
PostgresR:	error
PostgresClusterR:	error
WatchdogR:	error

VCH-902. Перспектива

- Добавление поддержки сетевых элементов типа VCH-505
- Веб-интерфейс для настройки параметров SNMP в VCH-902, отправка SNMP-трапов на несколько удаленных хостов, а также поддержка SNMPv3
- Индикация того, что сетевой элемент в данный момент занят другим пользователем
- Дистрибутив ПО для более простой установки и конфигурации
- Развертывание системы управления, используя ОС Astra Linux и ОС ALT Linux
- Резервирование с использованием большего числа серверов (в т.ч. с использованием виртуальной инфраструктуры)
- Добавление сетевого элемента произвольного типа для мониторинга статуса наличия соединения (если он не поддерживается системой управления на уровне контроля и установки параметров), а также отображения его на топологии

Спасибо за внимание!

АО «Время-Ч». Докладчик – Кузнецов Константин Андреевич.