

Научно-практический семинар Единое точное время в пакетных сетях:

требования, задачи и их решения от АО "Время-Ч"

Обзор международных стандартов и рекомендации в области синхронизации

Михаил Вексельман, к.т.н, АО «Время-Ч»

PTP 2.0 и PTP 2.1

Год создания	Номер версии РТР	Обратная совместимость
2002	1	Не определена
2008	2	Нет
2019	2.1	Да, с версией 2.0

Улучшения и изменения, которые появились в версии 2.1 по сравнению с 2.0:

- Протокол стал более гибким и универсальным
- Протокол стал более надежным и защищенным
- В протокол были добавлены рекомендации для повышения точности

Улучшения и изменения, которые появились в версии 2.1 по сравнению с 2.0:

- **Sdold**: расширенная идентификация профилей, улучшает совместную работу устройств
- **Гибридный режим**: комбинированное использование multicast и unicast снижает сетевую нагрузку.
- Безопасность: внедрение AUTH TLV и ICV для защиты целостности и авторизации.
- Modular Transparent Clock: поддержка ТС на уровне порта и внешних модулей (например, SFP).
- Slave Monitoring: сбор метрик точности и состояния Slave Clock для диагностики и контроля.
- Inter-domain Interactions
 - Поддержка взаимодействия между несколькими независимыми РТР-доменами
 - Поддержка множества Grandmaster и Slave Clock в разных доменах
 - Интеграция сетей с различными профилями или топологиями
- Enhanced Accuracy Metrics TLV в сообщении Announce

Протокол РТР. Сообщения

Transport Header	PTP Header	PTP Payload
---------------------	------------	-------------

Transport Header	PTP Header	PTP Payload	PTP TLVs
---------------------	------------	-------------	----------

Type-length-value (**TLV**, также «type-length-value» или «tag-length-value») — широко распространённый метод записи коротких данных в компьютерных файлах и телекоммуникационных протоколах.

1. Sdold: расширенная идентификация профилей, улучшает совместную работу устройств

	Bits					۰		
7	7 6 5 4 3 2 1 0					Octets	Offset	
tra	transport Specific messageType			1	0			
reserved versionPTP				1	1			
messageLength				2	2			
domain Number					1	4		
reserved				1	5			
flagField					2	6		
correctionField					8	8		
reserved					4	16		
sourcePortIdentity				10	20			
sequenceld				2	30			
			cont	rolFiel	d		1	32
		1	ogMes	sageln	terval		1	33

Заголовок для РТР пакета версии 2.0

	Bits				0	Ott		
7	7 6 5 4 3 2 1 0					Octets	Offset	
	majorSdold messageType				1	0		
minorVersionPTP versionPTP				1	1			
messageLength				2	2			
domain Number				1	4			
minorSdoId				1	5			
flagField					2	6		
correctionField					8	8		
messageTypeSpecific				4	16			
	sourcePortIdentity				10	20		
	sequenceld				2	30		
			cont	rolFiel	d		1	32
		1	ogMes	sageln	terval		1	33

Заголовок для РТР пакета версии 2.1

2. Гибридный режим (Mixed Mode): комбинированное использование multicast и unicast снижает сетевую нагрузку.

Тип сообщения	Режим передачи
Announce	Multicast
Sync	Multicast
Follow_Up	Multicast (если two-step)
Delay_Req	Unicast
Delay_Resp	Unicast

3. Безопасность

Механизмы интегрированной безопасности (Integrated security mechanism)

	Transport Header	РТР заголовок	PTP Payload	Другие PTP TLV	AUTHENTICATION TLV	I C V	Transport Trailer
--	---------------------	------------------	----------------	-------------------	-----------------------	-------------	----------------------

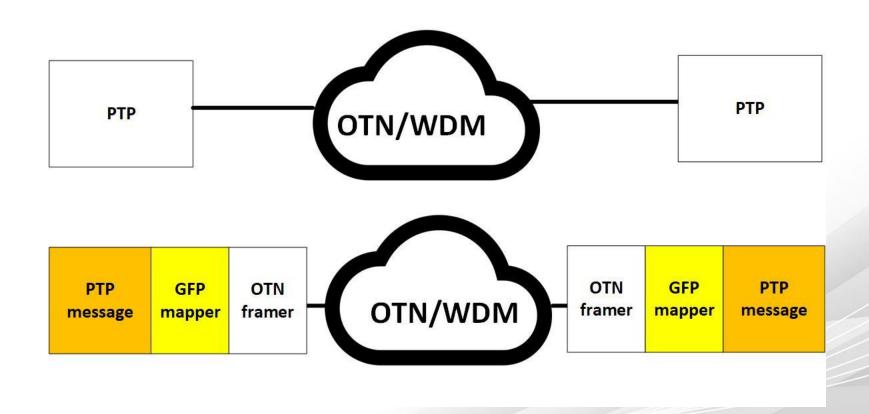
Для безопасной обработки AUTHENTICATION TLV необходим механизм управления ключами. Для оценки целостности пакета PTP вводится новое поле ICV- Integrity Check Value

4. Безопасность

Enhanced Accuracy Metrics TLV — это дополнительный блок данных, который может быть включён в сообщение Announce и содержит подробные метрики качества синхронизации, измеренные текущим Grandmaster или Boundary Clock.

Поле	Описание
meanPathDelay	Средняя задержка от источника до текущего узла
delayVariation	Вариация задержки (PDV)
offsetFromMaster	Смещение от мастера
syncMessageCount	Кол-во полученных Sync
delayResponseCount	Кол-во Delay_Resp
discardedPacketCount	Сколько пакетов было отброшено (например, по фильтру)
uncertaintyMetrics	Неопределенные поля для оценки качества расчёта времени

Выбора по протоколу BMCA может проходить не по приоритетам или ClockClass, а по реальным метрикам



Развитие PTP 2.1 (IEEE-1588-2019)

Буква-код / год	№ поправки внутри стандарта	Краткое содержание
1588b-2022	Amendment 1	Нормативное отображение (mapping) PTP поверх Optical Transport Network (OTN) ;
1588g-2022	Amendment 2	Ввод <i>опциональной</i> инклюзивной терминологии timeTransmitter / timeReceiver вместо <i>master/slave</i> , новые имена состояний портов;
1588a-2023	Amendment 3	Расширения для BMCA : улучшенный TLV <i>Enhanced Accuracy</i> , пояснительный Annex по алгоритму выбора Grandmaster, опциональное управление таймаутом Announce;
1588d-2023	Amendment 4	Руководство по использованию GDOI (Group Domain of Interpretation) для распределения ключей безопасности PTP
1588e-2024	Amendment 5	Полные MIB и YANG -модули для всех PTP-dataset'ов;

1588b-2022 PTP over OTN (G.709)

1588g-2022 Изменение терминологии в области синхронизации

International Telecommunication Union

ITU-T

G.8273.2/Y.1368.2

TELECOMMUNICATION STANDARDIZATION SECTOR (08/2019)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Packet over Transport aspects – Synchronization, quality and availability targets

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION NETWORKS, INTERNET OF THINGS AND SMART CITIES

Internet protocol aspects - Transport

Timing characteristics of telecom boundary clocks and telecom time slave clocks

ITUPublications
Recommendations

International Telecommunication Union

Standardization Sector

Recommendation

ITU-T G.8273.2/Y.1368.2 (06/2023)

SERIES G: Transmission systems and media, digital systems and networks

Packet over Transport aspects – Synchronization, quality and availability targets

SERIES Y: Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities

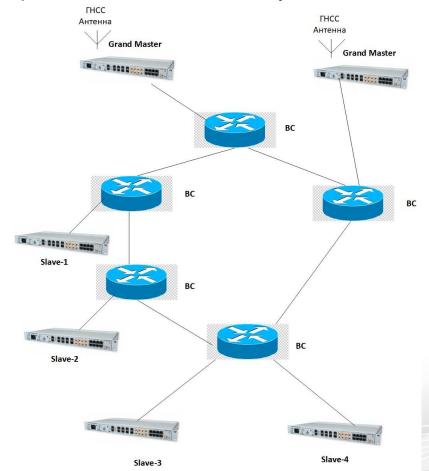
Internet protocol aspects – Transport

Timing characteristics of telecom boundary clocks and telecom time synchronous clocks for use with full timing support from the network

1588а-2023 Расширения для ВМСА

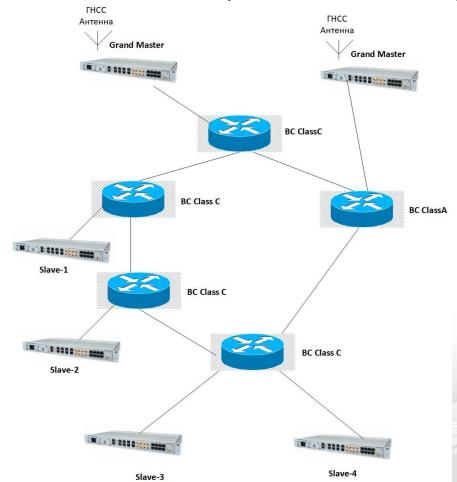
Alternate Best Master Clock Algorithm стал частью IEEE 1588 - 2019

В Enhanced Accuracy Metrics TLV введены новая метрика:


• stepsRemovedInaccuracyNs (накопленная ошибка пути)

Введен опциональный механизм управления Announce-timeout В Signaling-кадрах определяется новый параметр — AnnounceReceiptTimeoutRequest. Узел-инициатор может предложить соседу увеличить/уменьшить таймаут приёмов

1588а-2023 Расширения для ВМСА

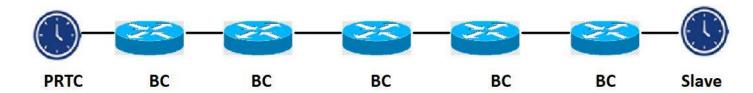

Что дает метрика Enhanced Accuracy Metrics TLV в выборе по алгоритму ВМСА

1588а-2023 Расширения для ВМСА

Что дает метрика Enhanced Accuracy Metrics TLV в выборе по алгоритму ВМСА

SyncE Сравнение EEC (G.8262) и eEEC (G.8262.1)

Параметр	EEC (G.8262)	eEEC (G.8262.1)
Frequency Accuracy	4.6 ppm	4.6 ppm
Pull in/Hold in	4.6 ppm	4.6 ppm
Wander generation	MTIE: 40ns @ 0.1s, rising to 113ns @1000s TDEV: 3.2ns @ 0.1s, rising to 6.4ns@1000s	MTIE: 7ns @ 0.1s, rising to 25ns @1000s TDEV: 0.64ns @ 0.1s, rising to 1.28 ns@1000s
Wander tolerance	250ns @ 0.1s, rising to 5000ns @1000s	250ns @ 0.1s, rising to 5000ns @1000s
Jitter generation	0.5UI <i>(1G,10G)</i> 1.2UI <i>(25G)</i>	0.5UI <i>(1G,10G)</i> 1.2UI <i>(25G)</i>
Clock Bandwitn	1-10 Hz	1-3 Hz
Holdover	120ns initial step, then 50ns/s frequency offset, plus 1.16 x 10-4 ns/s2 drift (const.temp)	10ns initial step, then 10 ns/s frequency offset, plus 1.16 x 10-4 ns/s2 drift (const.temp



Терминология OEC / eOEC

	Базовая рекомендация	Описание и целевая область применения
OEC (O TN E quipment C lock)	G.8251 (для транспорта OTU-k)	Физические OTN-часы, аналог EEC для Ethernet
eOEC (enhanced OTN Equipment Clock)	G.8262.1	OEC с ужесточёнными шумовыми масками (полностью идентичны eEEC) предназначен для сетей 5G, fronthaul, eCPRI.

G.8275.1

Профиль *G.8275.1* фазовый. Работает в режиме Ethernet Multicast. Требуется поддержка протокола PTP в качестве Boundary Clock или Transparent Clock на всех транзитных узлах сети от GM до Slave. Рекомендуется использовать совместно с SyncE для передачи частоты.

Эволюция PRC

ПЭИ: Сs or H

В3Г

SDH

SSU

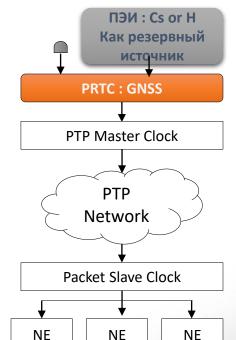
NE

ΝE

ePRC (G.811.1)
Частота

ПЭИ: Сs or H

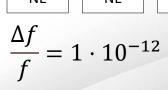
ВЗГ


SDH

SSU

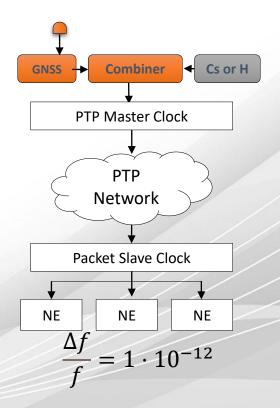
NE

NE


PRTC (G.8272) Частота + Фаза

$$\frac{\Delta f}{f} = 1 \cdot 10^{-11} \qquad \qquad \frac{\Delta f}{f} = 1 \cdot 10^{-12}$$

NE


NE

$$\Delta^{\varphi}=\pm 100~ns$$
 (для PRTC-A)

$$\Delta^{\varphi}=\pm 40~ns$$
 (для РКТС-В)

ePRTC (G.8272.1) Частота + Фаза

$$\Delta^{\varphi} = \pm 100 \ ns$$
 (для PRTC-A)

$$\Delta^{\varphi}=\pm 30~ns$$
 (для PRTC-B)

В режиме удержания в течении 14 дней отклонение фазы от UTC от 30 до 100нс!! (рекомендация G.8271.1)

ePRTC(G.8272.1)

PTP Master Clock с приемником ГНСС и функцией комбайнера

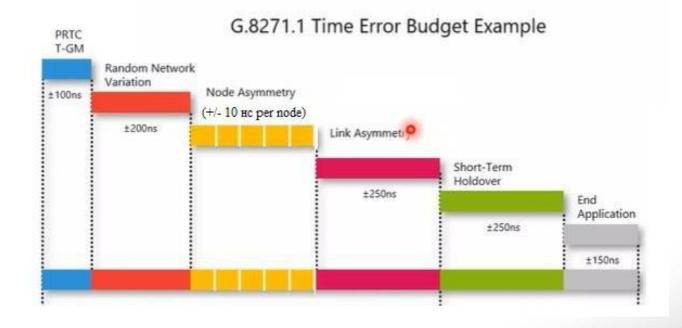
PTP Grand Master (GM) VCH-505

ПЭИ: высокоточный источник частоты

ПЭИ VCH -1008C

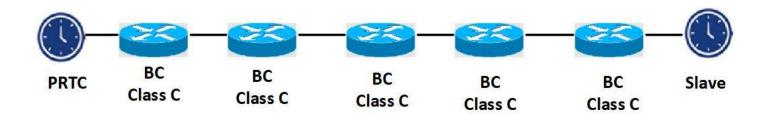
ВРЕМЯ-ЧРекомендация G.8273.2 Timing characteristics of telecom boundary clocks and telecom time slave clocks

Класс ВС	Max. Absolute Time Error; Max TE (нс)	Constant time Error; cTE (нс)
Α	≤ 100 ns	≤ ±50 ns
В	≤ 70 ns	≤ ±20 ns
С	≤ 30 ns	≤ ±10 ns
D	≤ 5 ns	Для будущего исследования

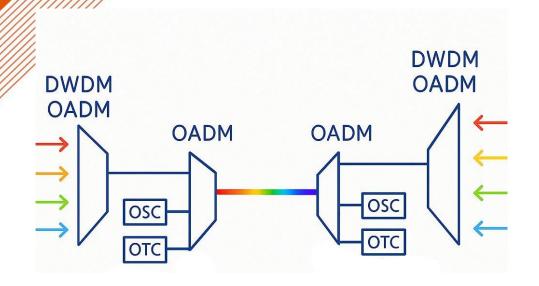


Рекомендация G.8273.3 Timing characteristics of telecom transparent clocks

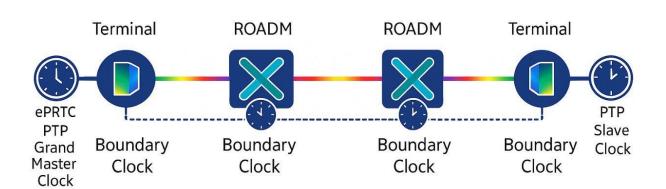
Класс ТС	Max. Absolute Time Error; Max TE (нс)	Constant time Error; cTE (нс)
Α	≤ 100 ns	≤ ±50 ns
В	≤ 70 ns	≤ ±20 ns
С	≤ 10 ns	≤ ±10 ns



Рекомендация G.8271.1 Расчет бюджета


Рекомендация G.8271.1 Расчет бюджета

TE = 100Hc + 200Hc + 10*10Hc + 250Hc + 250Hc + 150Hc = 1050Hc (<1500Hc)


OTC (Optical Time Channel)

- Реализуется в системах связи DWDM
- Выделяется отдельный оптический канал на своей длине волны для передачи сигналов синхронизации (на картинке пример для канала 1610 нм, но на практике могут использоваться другие)
- Работает подобно каналу управления OSC (Optical Supervisory Channel)
- Удобно использовать двунаправленный режим передачи с использованием bidirectional SFP модулей (упрощает реализацию компенсации асимметрии).

OTC (Optical Time Channel)

- •Минимальные и предсказуемые задержки
- •Защита от влияния клиентского трафика
- •Независимость от отказов ГНСС
- •В ОТС для передачи синхронизации используется протокол РТР (IEEE 1588)
- •Для передачи и вывода синхронизации на транзитных узлах должна быть реализована функциональность PTP Boundary Clock

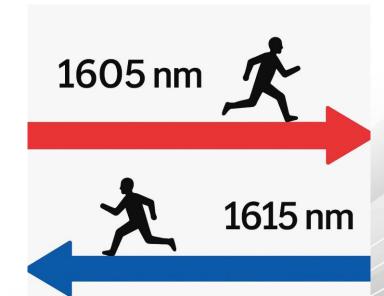
Расчет и калибровка ОТС

- Оптический бюджет для передачи в канале OTC на определенное расстояние
- 2 Временной бюджет ОТС
 - 3адержки на транзитных узлах Boundary Clock

2 Асимметрия задержек в волокне

Расчет и калибровка ОТС. Асимметрия задержек в волокне

Асимметрия возникает при передаче и приёме сигналов по одному волокну на

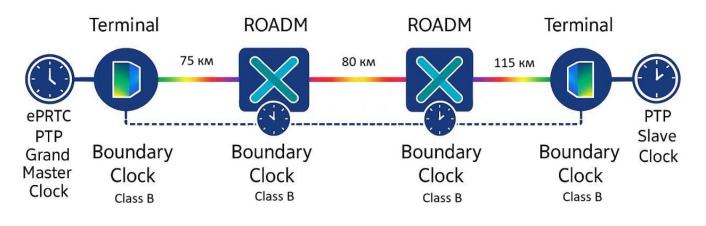

разных длинах волн (bidirectional OTC).

cTE ≈ (L / 2) ×
$$\Delta\lambda$$
 × D, где:

L — длина волокна (в км),

 $\Delta \lambda$ — разница длин волн (в нм),

D — коэффициент хроматической дисперсии (обычно ~18 пс/нм⋅км для волокна G.652).



Пример для 100 км волокна и разницы длин волн 10 нм:

$$cTE \approx (100 / 2) \times 10 \times 18 = 9000 \text{ nc} = 9 \text{ Hc}$$

Пример расчет временного бюджета ОТС

1 cTE (BC)

20 нс

20 нс

20 нс

20 нс

$$\sum cTE(BC) = 80$$
 нс

2 cTE (LINK)

6.75 нс

7.2 нс

10.35 нс

$$\sum cTE(LINK) = 24 \text{ HC}$$

$$cTE (OTC) = (80 \text{ Hc} + 24 \text{ Hc}) * 1,3 = 135 \text{ Hc}$$

Синхронизация в пакетных сетях

Синхронизация через	Технология	TE (Time Error)
Layer 3	Маршрутизация (РТР G.8275.2, NTP)	мс/мкс
Layer 2	Коммутация (РТР G.8275.1)	MKC/(HC)
Layer 2	OTN (in band transmission)	мкс/нс
Layer 1	WDM (PTP via OTC)	нс
Layer 1	Темное волокно (White Rabbit CERN)	нс
Layer 1	Использование оптический модемов (не PTP)	< HC